操作方法
选择统计 > 基本统计 > 双比率。
选择汇总数据。在样本 1 中的事件数中,输入 44。在试验数中,输入 50。 在样本 2 中的事件数中,输入 42。在试验数中,输入 50。单击确定。
我们得出如下图形结果。
解释结果: 对于此示例,正态近似检验有效,因为对于两个样本而言,事件数都大于四,试验数与事件数之间的差值也大于四。正态近似检验报告 p 值 为 0.564,Fisher 精确检验 报告 p 值为 0.774。这两个 p 值都大于通常选择的 a 水平 。因此,数据与总体比率相等的原假设一致。换句话说,在第一年内需要维修的复印机比率不因品牌不同而存在差异。作为采购经理,您需要根据别的标准来决定采购哪种品牌的复印机。 由于正态分布有效,因此从 95% 置信区间 中可以得出相同的结论。由于零位于置信区间(-0.0957903 至 0.175790)之内,因此可以得出结论,数据与原假设一致。如果您认为置信区间太宽,并且未提供有关 p1-p2值的精确信息,则可能需要收集更多数据才能获得差值的更好估计。