操作方法
第一步,我们所学到的式子为形如y=ax^2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数, 1此函数公式一般用于初学者求公式题目。题型易懂 2注意,此函数需要3个点 (注意:不能是对称的X轴上的点)
第二步,我们学到了顶点式,这个非常重要y=a(x-h)^2+k;交点式-------- y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k.有时题目会指出让你用配方法把一般式化成顶点式。 例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。 二次函数解:设y=a(x-1)²+2,把(3,10)代入上式,解得y=2(x-1)²+2。 注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。 具体可分为下面几种情况: 当h>0时,y=a(x-h)²的图象可由抛物线y=ax²向右平行移动h个单位得到; 当h<0时,y=a(x-h)²的图象可由抛物线y=ax²向左平行移动|h|个单位得到; 当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象; 当h>0,k<0时,将抛物线y=ax²向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象; 当h<0,k>0时,将抛物线y=ax²向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图象; 当h<0,k<0时,将抛物线y=ax²向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象
接下来是交点式,也是重点,,,,----- 交点式 y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] . 已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。 由一般式变为交点式的步骤: 二次函数(16张) ∵x1+x2=-b/a, x1·x2=c/a(由韦达定理得), ∴y=ax²+bx+c =a(x²+b/ax+c/a) =a[x²-(x1+x2)x+x1·x2]=a(x-x1)(x-x2). 重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。 其他知识介绍:牛顿插值公式 f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。
还有一些不常用的,供大家参考 双根式 y=a(x-x1)*(x-x2) 若ax²+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。 三点式 已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3)) 则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)[3] 与X轴交点的情况 当△=b²-4ac>0时,函数图像与x轴有两个交点。(X1,0), (X2,0). 当△=b²-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。 Δ=b²-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b²-4ac的值的相反数,乘上虚数i,整个式子除以2a)
方程关系 编辑 特别地,二次函数(以下称函数) 当y=0时,二次函数为关于x的一元二次方程(以下称方程),即 此时,函数图像与x轴有无交点即方程有无实数根。 函数与x轴交点的横坐标即为方程的根。 1.二次函数y=ax2,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 二次函数y=ax2(0,0) x=0 再向上移动k个单位,就可得到y=a(x+h)2+k(h<0,k>0)的图象 当h<0,k<0时,将抛物线y=ax^2向左平行移动|h|个单位,再向下移动|k|个单位,就可得到y=a(x+h)2+k(h<0,k<0)的图象 在向上或向下。向左或向右平移抛物线时,可以简记为“上加下减,左加右减”。 因此,研究抛物线 y=ax2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了。这给画图象提供了方便。 2.抛物线y=ax2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a)。 3.抛物线y=ax2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大。若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小。 4.抛物线y=ax2+bx+c的图象与坐标轴的交点: (1)图象与y轴一定相交,交点坐标为(0,c); (2)当△=b2-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x1-x2| =√△/∣a∣(a绝对值分之根号下△)另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标) 当△=0.图象与x轴只有一个交点; 当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。 5.抛物线y=ax2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b2)/4a。 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。 6.用待定系数法求二次函数的解析式 (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式: (a≠0) (2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)2+k(a≠0)。 (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a≠0)。
函数图像 编辑 基本图象 在平面直角坐标系中作出二次函数y=ax^2+bx+c的图像,可以看出,在没有特定定义域的二次函数图像是一条永无止境的抛物线。 如果所画图形准确无误,那么二次函数图像将是由一般式平移得到的。 轴对称 二次函数图像是轴对称图形。对称轴为直线x=-b/2a 对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。 特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。 a,b同号,对称轴在y轴左侧 a,b异号,对称轴在y轴右侧 顶点 二次函数图像有一个顶点P,坐标为P ( h,k ) 当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。 h=-b/2a, k=(4ac-b^2)/4a。 开口 二次项系数a决定二次函数图像的开口方向和大小。 当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。 |a|越大,则二次函数图像的开口越小。 决定位置的因素 二次函数一次项系数b和二次项系数a共同决定对称轴的位置。 当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号 当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号 可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。 事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。 决定交点的因素 常数项c决定二次函数图像与y轴交点。 二次函数图像与y轴交于(0,C) 注意:顶点坐标为(-h,k), 与y轴交于(0,C)。 与x轴交点个数 a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。 k=0时,二次函数图像与x轴只有1个交点。 质疑点:a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点。 当a>0时,函数在x=h处取得最小值ymin=k,在x减函数,在x>h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k 当a<0时,函数在x=h处取得最大值ymax=k,在x<h范围内是增函数,在x>h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y<k 当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数 图像要点 对称关系 对于一般式: ①y=ax^2+bx+c与y=ax^2-bx+c两图像关于y轴对称 ②y=ax^2+bx+c与y=-ax^2-bx-c两图像关于x轴对称 ③y=ax^2+bx+c与y=-ax^2-bx+c-2b^2*|a|/4a^2关于顶点对称[2] ④y=ax^2+bx+c与y=-ax^2+bx-c关于原点对称。 对于顶点式: ①y=a(x-h)^2+k与y=a(x+h)^2+k两图像关于y轴对称,即顶点(h,k)和(-h,k)关于y轴对称,横坐标相反、纵坐标相同。 ②y=a(x-h)^2+k与y=-a(x-h)^2-k两图像关于x轴对称,即顶点(h,k)和(h,-k)关于y轴对称,横坐标相同、纵坐标相反。 ③y=a(x-h)^2+k与y=-a(x-h)^2+k关于顶点对称,即顶点(h,k)和(h,k)相同,开口方向相反。 ④y=a(x-h)^2+k与y=-a(x+h)^2-k关于原点对称,即顶点(h,k)和(-h,-k)关于原点对称,横坐标、纵坐标都相反。 (其实①③④就是对f(x)来说f(-x),-f(x),-f(-x)的情况)
学习方法 编辑 知识要点 1.要理解函数的意义。 二次函数 2.要记住函数的几个表达形式,注意区分。 3.一般式,顶点式,交点式,等,区分对称轴,顶点,图像,y随着x的增大而减小(增大)等的差异性。 4.联系实际对函数图像的理解。 5.计算时,看图像时切记取值范围。 6.随图像理解数字的变化而变化。 二次函数考点及例题 二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。 误区提醒 (1)对二次函数概念理解有误,漏掉二次项系数不为0这一限制条件; (2)对二次函数图象和性质存在思维误区; (3)忽略二次函数自变量取值范围; (4)平移抛物线时,弄反方向 定义表达 一般地,自变量x和因变量y之间存在如下关系: y=ax²+bx+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.) 则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 表达方式 一般式:y=ax²+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x-h)²+k[抛物线的顶点P(h,k)] 交点式:y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线] 注:在3种形式的互相转化中,有如下关系: h=-b/2ak=(4ac-b²)/4ax?,x?=(-b±√b²-4ac)/2a 性质相关 1.抛物线是轴对称图形。对称轴为直线 x=-b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为 P(-b/2a,(4ac-b^2)/4a) 当-b/2a=0时,P在y轴上;当Δ=b²-4ac=0时,P在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线开口向上;当a<0时,抛物线开口向下 |a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a有1个交点。 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ=b²-4ac>0时,抛物线与x轴有2个交点。 Δ=b²-4ac=0时,抛物线与x轴有1个交点。 Δ=b²-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b²-4ac的值的相反数,乘上虚数i,整个式子除以2a)